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INTRODUCTION

An important goal of geodesy is to determine the anomalous potential

and its derivatives outside of the earth. Representing the surface

anomalies by a series of spherical harmonics is useful since it is then

possible to do a term by term solution of Laplace's equation and upward

continuation. This paper addresses the problem of finding such a

spherical harmonic series for anomaly values given on an equiangular

surface grid. (This is a first step toward the more complicated problem

of finding a function such that locally averaged values fit a grid of mean

anomalies.) Three approaches to this fitting problem are discussed and

compared: the discrete Fourier technique, the discrete integral

technique, and a new approach by this author. The peculiar nature of the

equiangular grid, with its increasing density of (noisy) data toward the

poles, causes each method to exhibit a different type of difficulty. The

new method is shown to be practical as well as precise since tbe numerical

conditioning problems which appear can be successfully handled by such

well-known techniques as a (simple) Kalman filter.

DISCRETE FOURIER METHOD

The discrete Fourier method [Dilts, 1985] uses a discrete Fourier

series to represent both the longitude and latitude variation of the

desired function. The data at the (i, j) grid point on a grid of N

latitude and 2N longitude intervals can be uniquely represented by the

double Fourier series,

N N iqe i im_j

f(0 i, _j) = _ _ A e e
q=-N m=-N qm

(1)

The discrete Fourier method makes its modeling assumption at this point by

choosing the function off the grid points to be given by this same double

Fourier expansion. Comparison of the continuous spherical representation
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and expansion of the normalized Legendre polynomials

n
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35



to the function modeled as in Equation (I) then yields

L A for lql<N

I C Bnm= qm

n= 0 nm q 0 otherwise.

(4)

A solution exists for the upper limit L, equal to infinity. It can be

expressed as

N

C = _ Znm A

nm q =-N q qm

(5)

where the "inverse" coefficients are obtained from

OO

Pnm (e) Isine I = _ Z nme -iqe (6)
q=__ q

for fl between zero and 2 7 radians.

The shortcoming of this approach is the need for an infinite number

of terms to solve Equation (4) for arbitrary %m (representing the data).

Small amounts of noise in A can lead to the presence of terms in the
qm

double Fourier expansion (Eq. (1)) which are not present in the gravity

field and which have infinite derivatives at the poles. Truncation of the

series is the strategy for coping with this difficulty. After truncation,

the function will no longer match the gridded data, and the degree of

discrepancy Js not under the analyst's control.

DISCRETE INTEGRAL METHOD

The discrete integral approach has been widely used (see for example

Colombo [198]!). It approximates the continuous inversion integral for

the spherical coefficients by a discrete, weighted sum.

N 2N- 1 -imP.

Cnm = [ [ >nm(6i ) e 3 Wi f(Oi,_j) (7)
±=0 j=0

The weights W. are usually chosen to be the grid block areas. The
1

with this approach is that the discrete Pnm(ei ) are notdifficulty

orthogonal on the equiangular grid. As a result, aliasing occurs,

and the resultant spherical expansion does not match the gridded data.

The expansion is truncated at degree N or less, and the amount of the

discrepancy is thus only indirectly under the analyst's control.

Comparison with the preceding technique is obtained by using the expansion

of Equation (6) in the above expression (with the weights proportional to

area and the i, terval extended to 2_):
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N

Cnm = _ (znmq + Zq+2Nnm + Zqm_2 N + ...)Aqm + pole terms. (8)
q=-N

Comparison with Equation (5) shows that it corresponds to the leading term

in the above expression. Thus, taking the degree of the discrete integral

expansion to infinity does not appear to reproduce the gridded data.

NEW METHOD

The third method is newly presented by this author. It uses the

Fourier representation of the data (Equation (I)) but makes its modeling

assumption in the spherical domain. Comparison to the spherical expansion

on__ at the grid points yields

L

n--O
C (B_m+ nm nmnm Bq+2N + Bq-2N + "'') = Aqm"

(9)

This differs from Equation (4) since it is the result of a discrete

comparison at the grid points (using the periodic nature of the discrete

exponential) and not a comparison of continuous functions. If L is chosen

equal to N+[m[-2 (except L=N for m=0), Equation (9) then becomes an

invertible matrix equation (with E indicating the sum of the B terms):

EC = A and then C = E-IA. (10)

Since the inverse yields a precise fit at the data points, the modeling

assumption is that all the C 's are zero for n greater than N+Iml-2. The
nm

continuous function resulting from using these C's in a spherical

expansion thus reproduces the data and has a finite number of terms.

Since L<2N the elements of the matrix E are easy to compute: at most two

of the B terms in Equation (9) are non-zero. Even for terms of degree

less than N, this solution is different from the discrete Fourier case,

Equation (5), since (ZE) is not the identity.

The difficulty with this method is that the matrix E becomes

ill-conditioned for large values of the order m. There are, however, many

well-known and trustworthy techniques for dealing with such problems. A

few such techniques are summarized below.

Perform the transformation of E to the identity in a column by

column fashion, stopping when the conditioning becomes a

problem. If this process is stopped at the column for degree N,

the discrete Fourier approximation is obtained. Further steps

toward finding E-I constitute improved approximations.
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Invert the matrix (E+61) for a small 6 and use it instead of
-IE

o Use a simple Kalmanfilter

A = EC+ V; C = ET(EET + yI)-IA (II)

where the measurement noise, V, has variance y11 and the prior

uncertainty on C is y2 I. Then y = yl/Y2 and ig a small
quantity.

o Use a more complicated Kalman filter with detailed models for

the noise and for the initial uncertainty.

All of these strategies yield results which are not overly sensitive to

noise. By adjusting the parameters in these methods, the analyst can

control how close the reconstructed function comes to the gridded data

(allowing only for small deviations consistent with the noise model). Use

of the Kalman filters also has the advantage of providing uncertainties in

the estimated spherical coefficients.

SUMMARY

The problem of fitting a smooth function to data given on an

equiangular spherical grid has been discussed. Two existing approaches

were summarized and a new approach was presented. Each approach was found

to possess an area of difficulty resulting from the properties of the

equiangular grid. Well-known techniques (such as Kalman filtering) are

available as practical strategies for dealing with the numerical

conditioning in the new method. As a result, the new method is practical

and capable of reproducing the gridded data to a precision consistent with

the noise model.
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